If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-0.1x^2+0.4x+1.2=0
a = -0.1; b = 0.4; c = +1.2;
Δ = b2-4ac
Δ = 0.42-4·(-0.1)·1.2
Δ = 0.64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.4)-\sqrt{0.64}}{2*-0.1}=\frac{-0.4-\sqrt{0.64}}{-0.2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.4)+\sqrt{0.64}}{2*-0.1}=\frac{-0.4+\sqrt{0.64}}{-0.2} $
| 1z+2=18 | | 15j-j=14 | | 15j+-j=14 | | 4x–3=3x-5 | | -6+5(-1-b=19 | | 51=7(-1-b)=19 | | 5p=450 | | 20+g+10g=9g-20 | | p-15p+10p=20 | | 10z+10=-14+14z | | 5r-3r-r=20 | | 7+9x=106 | | (x+1)(x+5)=x | | 8(8k-3)-5=38-3k | | 10x+6=5x-32 | | 12p-9p-p+3p+2p=14 | | b/13=-8 | | Y=-7/2x+12 | | 13c+2c+3c-13c=20 | | 4^3x=170 | | 52=k+28 | | 20s+13-15=19s-17 | | (2x)^2/(1-x)^2=3.6 | | 10p+4p+77=9 | | 7^(x+6)=49^x | | -4+2x=-12=8x | | 6x+10=2080 | | -3y-2(4y)=12 | | 3x+11=-7-2x | | F(x)=-4/x-6 | | -2(4x-5)=74 | | -7+5x+7x=29 |